Clinical microbiology

Protective effect of a mixture of kefir-isolated lactic acid bacteria and yeasts in a hamster model of Clostridium difficile infection

Patricia A. Bolla a,b,*, Paula Carasi a, María de los Angeles Bolla c, Graciela L. De Antoni a,b, María de los Angeles Serradell a

a Cátedra de Microbiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
b Centre de Investigación y Desarrollo en Cristotecología de Alimentos (CIDCA), CCT La Plata, CONICET, Argentina
c Servicio de Anatomía Patológica, Hospital Interzonal General de Agudos (H.I.G.A) “Profesor Dr. Rodolfo Rossi”, La Plata, Buenos Aires, Argentina

A R T I C L E I N F O

Article history:
Received 3 December 2012
Received in revised form 18 March 2013
Accepted 22 March 2013
Available online 29 March 2013

Keywords:
C. difficile
Kefir
Hamsters

A B S T R A C T

The objective of this work was to test the protective effect of a mixture (MM) constituted by kefir-isolated microorganisms (Lactobacillus plantarum, Lactobacillus kefir, Lc. lactis, Kluyveromyces marxianus and Saccharomyces cerevisiae) in a hamster model of infection with Clostridium difficile, an anaerobic Gram-positive bacterium that causes diarrhea. Placebo or MM was administered ad libitum in drinking water from day 0 to the end of treatment. Hamsters received orally 200 μg of clindamycin at day 7 and then were infected with 1 × 108 CFU of C. difficile by gavage. Development of diarrhea and death was registered until the end of the protocol. Surviving animals were sacrificed at day 16, and a test for biological activity of clostridial toxins and histological stainings were performed in caecum samples. Six of seven infected animals developed diarrhea and 5/7 died at the end of the experimental protocol. The histological sections showed edema and inflammatory infiltrates with neutrophils and crypt abscesses. In the group of animals infected and treated with MM1/1000, only 1 of 7 hamsters showed diarrhea and none of them died. The histological sections showed only a slight thickening of the mucosa with presence of lymphocytic infiltrate. These results demonstrate that an oral treatment with a mixture of kefir-isolated bacteria and yeasts was able to prevent diarrhea and enterocolitis triggered by C. difficile.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Kefir is a food product obtained by fermentation of milk with a community of lactic acid bacteria, yeasts and acid acetic bacteria confined in a complex matrix of polysaccharides and proteins (kefir grains). Many different health-promoting properties have been associated to kefir consumption [1]. Has been demonstrated that of probiotic microorganisms are capable of inhibiting the detrimental effect of pathogens, enhance the intestinal barrier, and modulating the immune response [2,3].

Clostridium difficile is an anaerobic and spore-forming Gram-positive bacterium that causes a wide range of gastrointestinal diseases from mild diarrhoea to pseudomembranous colitis, mainly associated with antibiotic treatments. With the recent emergence of hypervirulent antibiotic-resistant strains, the incidence of C. difficile associated diarrhoea is an increasing public health problem, particularly in both North America and Europe [4]. The alteration in the enteric microbiota due to antibiotic treatment allows the colonisation and growth of C. difficile in the gut. The main virulence factors of C. difficile are toxins A and B, but other factors such as adhesins and hydrolytic enzymes were also been described [5].

In the past few years, there has been a renewed interest in C. difficile infection due to the recognition that this disease is more common, more severe, and more resistant to standard treatment than previously reported [5]. Although prevention primarily revolves around control of antibiotic use, other potential factors have been explored, including the use of probiotic bacteria and yeast [6]. Regarding this issue, there are evidences of protective effects against C. difficile by different probiotic microorganisms using eukaryotic cell cultures [7–10] and distinct animal models [11–13]. Nevertheless, the efficacy of probiotics on the control of C. difficile infection in clinical trials is still inconclusive [14,15].

The studies using in vivo experimental models are the best way to understand the dynamic of host–pathogen interaction. Different animal models using guinea pig [16], rabbit [17], rat [11,18], mouse

* Corresponding author. Laboratorio de Microbiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina. Tel.: +54 221 4250497; fax: +54 221 4890741.
E-mail address: pbolla@quimica.unlp.edu.ar (P.A. Bolla).

1075–9964/$ – see front matter © 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.anaerobe.2013.03.010
[11,19] and hamster [20–23] have been described. Among them, hamsters (*Mesocricetus auratus*) are considered one of the most important models because of their high sensibility to the infection and the similarity with human signs and symptoms (such as colitis, histological damage and relapse) [20,23].

Our group has been dedicated to the study of the probiotic and technological properties of kefir, and until now, we have isolated more than one hundred bacterial and yeast strains from different kefir grains [24–26]. Previous studies carried out in our laboratory demonstrated the ability of a mixture of kefir-isolated microorganisms (*Lactobacillus plantarum* CIDCA 83114, *Lactobacillus kefir* CIDCA 8348, *L. Lactic* CIDCA 8221, *Kluyveromyces marxianus* CIDCA 8154 and *Saccharomyces cerevisiae* CIDCA 8112) to inhibit the growth of *Shigella sonnei* in vitro [27] and also the cytotoxicity of *C. difficile* toxins on eukaryotic cells [28].

The objective of this work was to test the protective effect of a mixture of microorganisms isolated from kefir (two lactobacilli, one *Lactococcus* and two yeasts) on an animal model of infection with vegetative forms of *C. difficile*.

2. Methods

2.1. Microenvironments and growth conditions

In this study, the pure cultures used comprised *Lactococcus lactis sub lactis* CIDCA 8221, *L. plantarum* CIDCA 83114, *L. kefir* CIDCA 8348, *Kluyveromyces marxianus* CIDCA 8154 and *S. cerevisiae* CIDCA 8112. These strains were previously isolated from kefir grains and have been identified and characterised by Garrote et al. [24] and Delfederico et al. [25]. The original reference cultures were maintained in Histoplast (Biopack, Argentina). Histological sections of 3 μm thickness were made and stained with 0.13 g/L Crystal Violet in 5% (v/v) ethanol and 2% (v/v) formaldehyde. Next, an application of twofold serial dilutions of 0.45 μm-filtered cecal contents (0.01% w/v) on 48-well tissue culture plates (Corning, NY) and incubated at 37 °C for 4 h in a 5% (v/v) CO2–95% (v/v) air atmosphere. Two hundred μl of bovine foetal serum (BIOSEr, Argentina, PAA Laboratories GmbH), 2 g/L NaHCO3, 10 mg/L streptomycin and 10 IU/mL penicillin G. Cells were inoculated (6.25 x 103 cells per well) into 48-well tissue culture plates (Corning, NY) and incubated at 37 °C for 4 h in a 5% (v/v) CO2–95% (v/v) air atmosphere. The clinical isolate of *C. difficile* strain 117, obtained from the Hospital Dr. Muñiz (Buenos Aires, Argentina) and previously characterised as positive for TcdA and TcdB production, was grown for 24 h at 37 °C in Brain Heart Infusion (BHI; Biokar Diagnostic, Beauvais, France) supplemented with 0.05% (w/v) cysteine chloride (BHI/cys) in anaerobic conditions (AnaeroPak, Mitsubishi Gas Chemical Co, Inc). The culture was centrifuged for 10 min at 12,000 g. The supernatant was discarded and the bacterial pellet was resuspended in sterile PBS at a concentration of 10^10 CFU/mL.

2.2. Animals

Six- to eight-week female outbred Syrian hamsters (Golden, CPZ: SYR, *M. auratus*) were obtained from Laboratorio Azul Diagnóstico (Azul, Argentina). Hamsters were accustomed to their new environment for at least 10 days before the start of the experiments. Animals were maintained in a 12 h light/dark cycle and received conventional food and water *ad libitum*. All procedures were performed according to international guidelines for animal care.

2.3. Induction of *C. difficile* enterocolitis

Animals were infected with *C. difficile* strain 117, according to the protocol described by Trejo et al. [22] with some modifications. Briefly, animals received a single intra-gastric dose of 200 μg of clindamycin hydrochloride (ParaFarm, Argentina) prepared in PBS per animal (day 0). On day 4, animals were infected by gavage with 0.1 mL of *C. difficile* (1 x 10^8 bacteria/animal). Through the experimental period, we registered weight evolution, diarrhoea and death. Animals with signs of severe illness were sacrificed according to humanitarian endpoint. In those cases, cecal contents were taken during necropsy and conserved until use for determination of clostridial toxins level. Samples from animals that died spontaneously were not included in other assays. Finally, surviving animals were sacrificed on day 9 of the protocol in order to analyse clostridial toxins level and to perform histological analysis of cecal segments.

2.4. Microbial mixture (MM) treatment

The MM was prepared as described above. The administration of MM (dilution 1/100 and 1/1000) or placebo in drinking water started 11 days before infection. For this experimental protocol hamsters were divided in five groups containing 7 animals each: animals receiving MM and clindamycin (MMA); animals receiving MM, clindamycin and *C. difficile* by gavage (MMI); animals receiving placebo and PBS by gavage (CA); and animals receiving placebo and PBS by gavage (C).

2.5. Determination of clostridial toxins

To determine the presence of toxins from *C. difficile* strain 117, biological activity of cecal content was tested by cell detachment assay Trejo et al. [7] Briefly, monolayers of Vero cells were grown in Dulbecco’s Modified Eagle’s Medium (DMEM; Gibco BRL Life Technologies, Rockville, MD, USA) supplemented with 10% (v/v) of bovine foetal serum (BIOSEr, Argentina, PAA Laboratories GmbH), 2 g/L NaHCO3, 10 mg/L streptomycin and 10 IU/mL penicillin G. Cells were inoculated (6.25 x 103 cells per well) into 48-well tissue culture plates (Corning, NY) and incubated at 37 °C for 4 h in a 5% (v/v) CO2–95% (v/v) air atmosphere. Two hundred μl of twofold serial dilutions of 0.45 μm-filtered cecal contents (0.01% w/v) in DMEM without serum were added per well and incubated for 16 h at 37 °C in a 5% (v/v) CO2–95% (v/v) air atmosphere. The clinical isolate of *C. difficile* was grown for 24 h at 37 °C in Brain Heart Infusion (BHI; Biokar Diagnostic, Beauvais, France) supplemented with 0.5 g/L cysteine chloride (BHI/cys) in anaerobic conditions (AnaeroPak, Mitsubishi Gas Chemical Co, Inc). Culture was centrifuged at 15,000 g for 15 min and the bacterial pellet was resuspended in sterile PBS added with sterile 3 M sucrose. The resulting suspension was stored at −80 °C until use. The final concentration of bacteria and yeasts in MM was 10^11 CFU/mL and 10^8 CFU/mL respectively (*L. plantarum*: 1.2 x 10^11 CFU/mL, *L. kefir*: 1.1 x 10^11 CFU/mL, *L. lactis*: 1.2 x 10^11 CFU/mL, *K. marxianus*: 1.2 x 10^8 CFU/mL, *S. cerevisiae*: 1.3 x 10^6 CFU/mL).

The clinical isolate of *C. difficile* strain 117, obtained from the Hospital Dr. Muñiz (Buenos Aires, Argentina) and previously characterised as positive for TcdA and TcdB production, was grown for 24 h at 37 °C in Brain Heart Infusion (BHI; Biokar Diagnostic, Beauvais, France) supplemented with 0.05% (w/v) cysteine chloride (BHI/cys) in anaerobic conditions (AnaeroPak, Mitsubishi Gas Chemical Co, Inc). The culture was centrifuged for 10 min at 12,000 g. The supernatant was discarded and the bacterial pellet was resuspended in sterile PBS at a concentration of 10^10 cells/mL.

2.6. Histological analysis of cecal segments

Cecal tissue samples from hamsters were resected and fixed in 10% neutral buffered formalin, routinely processed and embedded in Histoplast (Biopack, Argentina). Histological sections of 3–5 μm
were deparaffinized, hydrated and stained with haematoxylin-eosin for microscopic observation.

2.7. Statistical analysis

Statistical comparisons were made by analysis of variance (ANOVA). Significant differences were established by Fisher’s test.

3. Results

3.1. Induction of C. difficile enterocolitis

The infection with C. difficile strain 117 in clindamycin-treated hamsters (CI group) induced diarrhoea in 6 of 7 animals and five days after infection, only 2 animals survived (Table 1). This group began to show signs of lethargy, dehydration and diarrhoea after the third day post-infection. In agreement with these observations, an average weight loss of 20.1 ± 2.8 g per animal was registered for CI group in that period (data not shown). No signs of illness were observed in the uninfected controls that did not receive clindamycin (C group).

Regarding the effect of antibiotic administration, we observed that 5 of 7 hamsters developed diarrhoea in the uninfected control group that received antibiotic (CA group), 2 of which died before the end of the experimental protocol (Table 1).

3.2. Effect of treatment with MM on C. difficile enterocolitis outcome

To determine the dose of microbial mixture (MM) that was more effective to protect against C. difficile infection, we tested three different dilutions of MM administered in drinking water (1/100 and 1/1000). The treatment with MM1/100 did reduce neither the fraction of animals with diarrhoea nor the percentage of mortality produced by C. difficile infection (data not shown). However, the administration of MM1/1000 (containing 1×10^8 bacteria/mL and 1×10^5 yeast/mL) significantly reduced the amount of animals with diarrhoea after infection with C. difficile. All animals treated with MM1/1000 (MMI group) survived at the end of the protocol (Table 1).

Additionally, treatment with MM1/1000 reduced the damage induced by clindamycin administration (MMA group), since no signs of illness (diarrhoea or death) were observed in that group along the protocol (Table 1).

Taken together, these results strongly suggest that the mixture of kefir-isolated microorganisms, administered in the adequate dose protect against infection with C. difficile and also reduce the damage induced by antibiotic treatment.

3.3. Determination of biological activity of clostridial toxins

To determine whether the decrease in the development of C. difficile enterocolitis by treatment with MM1/1000 correlated with a reduction of clostridial toxins in the caecum, we performed an in vitro assay to test the biological activity of TcdA and TcdB in faecal filtrates obtained from caecal contents. Fig. 1 shows the percentages of detached cells when the concentration of faecal filtrates was 5% v/v. Samples from animals belonging to the infected group (CI) showed activity associated to clostridial toxins (88.3 ± 9.8% of detached cells), meanwhile in the samples from infected animals treated with MM1/1000 (MMI group) the percentage of detached cells did not show significant differences to samples belonging to control animals (C, CA and MMA group) ($P < 0.05$).

3.4. Histological analysis

Fig. 2 shows the haematoxylin-eosin stained sections of caecal tissue from representative animals belonging to different groups under study. Histological analysis of acute colitis includes studying the following features: presence of: oedema, superficial mucosal ulcers, cryptitis and crypt abscesses, and lamina propria inflammation (with recruitment of neutrophils, lymphocytes, plasma cells and eosinophils, depending on the stage of the disease). In hamsters infected with C. difficile (CI group), we observed thickening of the mucosa, oedema (arrow “e”) and an inflammatory infiltrate with a predominance of neutrophils (arrow “ii”) and cryptic abscesses (arrow “ca”) (panels A, A’). Animals that only received clindamycin (CA group), show a chronic inflammation with an infiltration of lymphocytes (panels B and B’). The group of hamsters treated with MM1/1000 and then infected with C. difficile (MIM group) did not develop acute colitis, although a slight thickening of the mucosa could be observed due to mild inflammatory infiltrates of lymphocytes (panels C, C’). Untreated control animals (C group) and animals from MMA group showed normal histological features and preserve the thickness of the mucosa (panels D and D’). According to these results we can conclude that the oral administration of MM protects hamsters from acute injury due to antibiotic and C. difficile infection.

4. Discussion

Probiotics are being used with increasing frequency as a treatment for several medical conditions such as allergic diseases, bacterial vaginosis, urinary and gastrointestinal tract infections [31]. Several studies have used probiotics such as Saccharomyces boulardii and L. rhamnosus GG for the prevention of antibiotic-associated diarrhoea (AAD) or C. difficile-associated diarrhoea (CDAD) [6,32,33]. Hickson et al. [34] reported the effectiveness of a preparation containing

<table>
<thead>
<tr>
<th>Group</th>
<th>Diarrhoea</th>
<th>Dead animals</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI (placebo + ATB + C. difficile)</td>
<td>6/7</td>
<td>5/7</td>
</tr>
<tr>
<td>MMI1/1000 (MM + ATB + C. difficile)</td>
<td>1/7</td>
<td>0/7</td>
</tr>
<tr>
<td>MMA1/1000 (MM + ATB)</td>
<td>0/7</td>
<td>0/7</td>
</tr>
<tr>
<td>CA (placebo + ATB)</td>
<td>0/7</td>
<td>2/7</td>
</tr>
</tbody>
</table>

* These results are representative of three independent experiments.

b ATB: clindamycin (200 μg per animal).

Fig. 1. Biological activity of toxins by C. difficile using Vero cells. Hamsters receiving placebo and infected with C. difficile 117 (CI group) animals that only received placebo (C group) animals that received placebo and clindamycin (CA group) hamsters treated with MM, that received clindamycin and were infected with C. difficile 117 (MIM group) hamster treated with the MM, that received clindamycin (MMA). The results shown here are representative of two independent experiments. * $P < 0.05$.
L. casei, S. thermophilus and L. bulgaricus against CDAD in clinical trials. In this work, we demonstrated the protective effect of a mixture constituted by bacterial and yeast strains isolated from kefir-fermented milk against C. difficile infection in a hamster model.

The hamster is regarded as an important model of C. difficile disease since many of the clinical symptoms observed in humans can also be observed in the model [21]. After administration of clindamycin and challenge with toxigenic strains of C. difficile, hamsters develop a haemorrhagic caecitis, manifested as "wet tail" (a sign of diarrhoea) which is mainly followed by death [23]. Although, animals could die without signs of diarrhoea when infected with highly virulent strains of C. difficile [35,36]. Regarding these features, our model of infection worked as expected, since 6 of 7 hamsters infected with the C. difficile strain 117 developed diarrhoea, and 5 of them finally died before the end of the experiment. On the other hand, only 1 of 7 animals belonging to the

Fig. 2. Haematoxilin-eosin staining of the cecal tissues. Hamsters receiving placebo and infected with C. difficile 117 (CI group) — panels A, A'; animals that received placebo and clindamycin (CA group) — panels B, B'; hamsters treated with MM, that received clindamycin and were infected with C. difficile 117 (MMI group) — panels C, C'; animals that only received placebo (C group) — panels D, D'. A, B, C: 100X; A', B', C': 400×. e: oedema; ii: inflammatory infiltrate; c: cryptic abscess.
group treated with MM1/1000 showed signs of diarrhoea after infection and none of them died. Indeed, biological activity of clostridial toxins was significantly reduced in the samples of cecal contents from infected hamsters treated with MM1/1000 compared with non-treated infected controls. This outcome could be due to a decrease in the ability of C. difficile to produce or release toxins in the gut. In this sense, it has been described that Lactobacillus delbrueckii subsp. bulgaricus B-30892 secreted one or more bioactive components which neutralise cytotoxicity of C. difficile probably by inactivating its toxins [9]. More recently, Trejo et al. 2010 [8] showed that co-incubation of C. difficile strain 117 with L. plantarum or Bifidobacterium strains induce a decrease in the production of toxins in vitro. However, we do not have sufficient evidence to confirm these hypotheses in our model.

The failure of MM1/1000 administration to protect against the C. difficile enterocolitis in this model could be probably due to the high doses of microorganisms in the gut. This could induce an exacerbated inflammatory response in the mucosa thus leading to a damage of the tissues which even might facilitate the infection.

Differences between healthy and ill animals were also evident by macroscopic observation of abdominal cavity and cecal content during necropsy. As a consequence of C. difficile infection, haemorrhagic infiltrates in cecal tissues and a large amount of gas in a yellow content were observed in animals that presented diarrhoea. These features were compatible with those described for C. difficile-induced enterocolitis [37] and correlate with the characteristics visualised by microscopic observation of cecal tissues. A thick mucosa, with oedema, cryptic abscesses and an inflammatory infiltrate with a predominance of neutrophils was only observed in samples from hamsters infected with C. difficile. However, control group that received antibiotic treatment (clindamycin) presented different histological features, showing a chronic inflammation with an infiltration of lymphocytes. On the other hand, cecal samples from infected animals treated with MM showed only a slight thickening of the mucosa due to mild inflammatory infiltrates of lymphocytes.

All these findings strongly suggest that treatment with MM1/1000 not only significantly reduced the proportion of hamsters which developed enterocolitis induced by infection with C. difficile strain 117, but also was effective against antibiotic-associated diarrhoea in this animals.

4.1. Conclusion

The ability of a mixture constituted by kefir-isolated bacteria and yeasts to protect against C. difficile-induced enterocolitis in hamsters was described by first time in this work, contributing significantly to the knowledge about the probiotic properties of this functional food.

Acknowledgements

This work was supported by Agencia Nacional de Promoción Científica y Tecnológica (PICT 00479/06), CONICET and Universidad Nacional de La Plata (Project 11X/443). P Bolla and P Carasi are fellows of CONICET; M Bolla is fellow of Servicio de Anatomía Patológica del hospital Intervencion General de Agudos (H.I.G.A) “Profesor Dr Rodolfo Rossi”. GI De Antoni is a member of the Carrera de Investigador Científico y Tecnológico de CICPBA; M Serradell is a member of the Carrera de Investigador Científico y Tecnológico de CONICET.

References

